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NUMERICAL STUDIES OF A DETONATION ANALOGUE
J F Clarke, P L Roe, L G Simmonds and £ F Toro
College of Aeronautics, Cranfield Institute

of Technology, Cranfield, Bedford, MK43 OAL, UK

Abstract
As an aid to deciding a computational strategy for problems
involving strong detonation waves, we have applied a variety of
numerical techniques to a mathematical problem devised by
Fickett, which exhibits many of the essential computational
difficulties and possesses analytical solution corresponding to
overdriven and underdriven reacting flows. Classical shock
capturing methods such as those of MacCormack and Godunov, do
not produce acceptable solutions. Better solutions can be
provided by Flux Difference Methods (Roe's method) and by
Random Choice Methads (still in one dimension), especially by
using a new variant that yields second order accuracy. Adaptive
gridding techniques for these methods are currently being invest-

igated with encouraging preliminary results.
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1. INTRODUCTION

Theoretical modelling of detonation phenomena in condensed
media is an area of increasing interest at the present time.
Proposed mathematical models usually are systems of hyperbolic
partial differential equations together with appropriate
boundary and initial conditions as well as correlations. The
numerical solution of such equations is not a trivial problem,
although great advances have been made in recent years. The
main numerical difficulties arise when representing discontin-
uities (eg. shocks, interface), Modern methods are able to capture
discontinuous features of the flow, without applying any special
features to them, and yet resolving them within two to three
mesh intervals. These methods are very satisfactory when applied
to a chemically inactive gas, but are not wholly adequate when
the wave motion is coupled with strong reactions, as in a
detonation wave. The situation we wish to model involves a
hydrodynamic shock of negligible thickness which triggers and is
followed by a reaction zone whose thickness is small but signifi-
cant. In realistic computations involving an affordable number
of mesh points, the reaction zone might occupy five to ten mesh
intervals, and if two or three of these have to take care of the
shock, the reaction zone is not well represented.

A realistic mathematical model involves the unsteady Euler
equations in two or three dimensions as basic component whose

numerical solution requires a significant computational effort,
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Hence in deciding an adequate numerical strategy it is best to
choose an analogous mathematical problem that contains some of
the basic numerical difficulties posed by realistic models. Here
we use a detonation analogue proposed by Fickettl, which has
two fundamental features, namely a hydrodynamic shock and a
reaction zone of finite width. In addition the analogue has
exact solutions which are used to assess the adequacy of candidate
numerical methods.

So far we have tested the following numerical techniques:
(1) MacCormack's version of the Lax-Wendroff Scheme, (2) a
Moving Finite Element Method, (3) Godunov's Method, (4) the
Random Choice Method, (5) a Higher Order Random Choice Method
and (6) a Flux Difference Splitting Method. It is found that
methods 1 to 3 are inadequate; methods 4 and 5 perform very well,
especially the latter. These methods have the capability of
producing shocks (and contacts) of zero width. Multidimensional
versions of these methods however, have not yet been developed to
a satisfactory level. We are currently working on this problem.
Method 6 performs very satisfactorily, although discontinuities
are smeared; this method extends readily to multidimensional
problems via space operator splitting.

In our experience, the choice of the numerical methods to use
in the real models has to be coupled with adaptive gridding
techniques. These will allow us to optimise the computing

resources by applying finer grids where strictly required {eg.
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shock and reaction zone) only. We are currently incorporating
this technique into the development of numerical methods.

The remaining part of this paper is organised as follows:
in Section 2 we briefly describe the detonation analogue and its
likely solutions. In Section 3 we describe the main features of
the numerical methods used and give references for further
details. In Section 4 we describe two test problems. In Section
5 we present numerical results and the performance of the methods.
In Section 6 we draw some conclusions.

2. THE DETONATION ANALOGUE

The construction of the detonation analogue considered here
is due to Fickett!. The philosophy behind such construction
is the need for a mathematical object that retains some of the
essential features of reactive flow whilst avoiding many of the
complexities present in mathematical models for the actual

physical problem (the physical system). The proposed analogue is

pe + P =0 (1)
YRR (2)
p =.p(p,2) (3)
r = r{psA) (4)

This is a 2 x 2 system (1) - (2) for the unknowns p and A.
The conserved variable p and the flux p are to be associated
with the density and pressure of the physical system and so the

same names will be used. The auxilliary relations (3) and (4)

play the roles of equation of state and rate equation respectively.
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A single chemical reaction A - B is allowed, with the mass
fraction of B denoted by A. Concerning p and r in equations
(3) - (4), various choices are possible. Here we take
3(p? + AQ) (5)
2(1 - ) (6)

P

r

where the positive constant Q plays the role of heat of reaction.
The rate r is restricted to positive values only except in the
equilibrium state A = 1 where r = 0. When Q = 0 the detonation
analogue reduces to the inviscid Burger's equation (the unreactive
flow analogue).

Likely solutions of the analogue are depicted in Fig. 1.

Fig. 1(a) illustrates the limiting case of an overdriven deton-
ation with Py = P = S. Here Py is the left boundary function
(constant in time in this case), Po is the final equilibrium

value (complete reaction, A = 1) and S is the leading shock speed.
Fig 1.(b) illustrates an overdriven detonation with oy = P > S and
Fig. 1(b)} illustrates an unsupported detonation with an unsteady
‘following flow' region. Fig. 1{(d) depicts the behaviour of the
reaction progress variable X.

For the steady state case (eg. Fig. 1{a)) one can obtain an
exact solution by transforming the equations to a frame moving
with the shock of constant speed S. The result is

o =S+ [s -0 - ] (7)
with 0 ¢ t ¢ 1. The solution is valid for the leading shock and

the reaction zone attached to it, ie. from X = 0 (t = 0) to
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A=1(t=1). Note that reaction is completed in unit time. The
exact solution (7} will be used to assess the performance of the
various candidate numerical methods.

3. NUMERICAL METHODS USED

We consider six numerical methods. Here we give a brief
description of each of them together with appropriate references
where further details can be found. In general, we want to solve
a hyperbolic system of the form

Ut + F(U)x = S(W) (8)

which for the analogue discussed in Section 1 one has

U =[§"] , F(U) = {i(pz ;XQ)] ,S(U) = [Y‘((Jk)] (9)

the unknowns of the problem are pand A. They depend on
space x and time t.

3.1 The MacCormack Method

This is a two-step version of the Lax-Wendroff finite
difference method. The first step of the method (predictive)
obtains a provisional value U* at an intermediate time t* by,
say, forward flux differencing system (8), ie.

-t - 5[ -]
Here source terms have been ignored. The second {corrective)
step advances the solution to the complete time level n+l by
differencing in the opposite direction and using predicted

values U* for flux evaluation, ie.
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nl n AV/2 IMew *
R L R (100)

Application of this scheme to practical situations will
normally involve the use of artificial viscosity, an aspect
which is not considered here. Further details of the method can
be found in Ref 2.

3.2 A Moving Finite Element Method

The moving finite element (MFE) method is a relatively new
technique still under active development. It can be explained
by reference to the scalar hyperbolic equation

Ut + fx =0 (11)
where to begin with we consider only the homogeneous {source-
free) problem.

An approximation is sought by replacing U by a piecewise
linear function V of the form

V= 2‘.]. a; o (12)

where

are nodal amplitudes

o
n

ai\t) , =1, . .., Tmax *

are linear basis

R
It

ai(_x_ﬁé) i 1= 1} A ]max ’
functions of local compact support and S = S(t) is
a time-dependent vector of nodal positions Si .
i=1, 0L, .

max

Partial differential of (11) with respect to time yields

V, = Ii(h0g 4 58) (13)

where
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o and Bi are basis functions defined by the same grid points
(locally).

The equation (11) is replaced by

Ve + f(V), =0 (14)

where V. is given in (13). The flux is projected into the approxi-

t
mation space spanned by the basis functions oy and Bi.by minimfsing

the L, residual

”Vt * f(V)xl ‘z

over the parameters a, and S (i=1,..., 1max)'

This leads to the set of MFE equations (ODE's)

A(yly = 9ly).
where

y=la.s ...y, Sy 3

A(y) is the MFE matrix, which is square and symmetric,
consisting of inner products of the basis function a and 8 in
2 x 2 blocks. g{y) is a vector arising from f(V)x.

The solution to this equation gives the solution of the grid
points which vary with time and the solution V which corresponds to

the grid point. The optimal feature of this method is that it

allows the grid points to move to areas of the flow where large
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gradients exist, thus giving high resolution in this area.

The model paths x = si(t) are found to be approximations to
the characteristic curves of (11), so that the nodal values
ai(t) are almost independent of t. This observation has led
Edwards 3 to propose a simpler version of MFE, which he calls
the mobile element method (MEM). Here si(t) is constrained to
follow a characteristic path, and in (13) only the a, have to
be considered in the minimisation,

In practice we have not found either formulation to be
satisfactory in the presence of a source term. Computations
begin well, for a few time steps, but as nodes follow the charac-
teristics they are removed from the reaction zone without being
replaced. To date we have not succeeded in finding any theoretical
framework that yields a satisfactory practical procedure.

A1l the other methods we use in this paper involve the
concept of the Riemann problem, a description of which is now
given.

3.3 Riemann Problem

The Riemann problem for a system (8), without the source

terms, is the initial value proplem for (8) with initial data
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consisting of two constant states. Given the simplicity of the
initial data one can solve this problem exactly if needed. The
problem with more general data can then be reduced to sequences of
Riemann problems by approximating the data by piece-wise constant
functions.

We now present the results for the Riemann problem for
the detonation analogue written as

Uy + A(U)Uy = 0O (15)

where the Jacobian matrix A is given by

a) = & - [g 58] (16)

and whose eigenvalues are e; = 0 and e, = p with corresponding

right eigenvectors
s VZ = (17)

The solution consists of two waves. The left wave

dx
dt
dx

discontinuously and p is constant. The right wave dt - € =°

= e, =0 is 1like a 'contact' across which p and A change

is either a shock or a rarefaction. The complete solution may
be expressed as follows

oy = [0 + Q0ry - Xr)]% 2 0 {18)
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If Py > o then p > p. {shock). If o <P, then Py < Pr
(rarefaction). Here subscript m denotes values in the uniform
region between waves 1 and 2 and subscripts 1 and r denote left
and right states (data for Riemann problem). More details
about the solution of this problem can be found in Ref [4].

3.4 Godunov's Method

This two-step method was first proposed by Godunov {11].
It uses the solution of the Riemann problem to obtain provisional

values for flux evaluation. The scheme is

U?+1 n [.?:g n+i] (19)

n+d

where F1+i

is the flux F in system (8) evaluated at the solution
of the Riemann problem with data U and U]+1 at X = iaX and
= {n + })AT.

3.5 The Random Choice Method

This method was first presented as a computational technigue
by Chorin® in 1976. A number of improvements have since then
been incorporated into the basic technique. An up-to-date account
of the method as applied to the Euler equations in one dimension
can be found in Ref. 6. Essentially, the Random Choice Method
(RCM) solves the seguence of Riemann problems at a given time
level n exactly. In a given computational cell i of size AX
there will be waves from the_left Riemann problem (i-1, i) and

from the right Riemann problem (i, i+1). The solution at the
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grid point i at time level n+l will be taken as the solution of
the Riemann problems concerned evaluated at a random position
within cell i. A unique feature of this method is its ability
to represent discontinuities with zero width.

3.6 A Higher Order Random Choice Method

Essentially, this method as presented in Ref 7 1is a random
generalisation of the Godunov's method, whereby intercell fluxes
are evaluated at the solution of the corresponding Riemann
problem at a random position as in the two-step version of the
Random Choice Method. This technique turns out to be second
order accurate. A hybridised version of this method was
presented in Ref. & where traditional RCM is used at large
discontinuities. These ideas are still in development, but our
experience so far from applications to various problems is
encouraging.

3.7 A Flux Difference Splitting Method

Several numerical schemes are based on an approximate wave
analysis of the interaction between adjacent cells i,i+1; that
is to say they solve an approximate Riemann problem for that
data. Roe's method9 is to solve the Riemann problem for a

local linearisation of the governing equations

U, = 0

U, + A(UL,U X

i R

where A is a local average of the Jacobian matrix, chosen to have

the property
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= F

o= Fp-F

AU, Up) (g - U R~ FL
This property ensures the solution is exact if UR’UL are
states that can be connected by a single discontinuity. For

the detonation analogue this matrix is very simple, it is

R(U,.Ug) = [“"L + op) QQ} (26)
0 0

(Compare equation (16).

The eigenvalues and eigenvectors of this matrix are as given
in Section (3.3), but with p replaced by i(pL + pR).

To compute the interface flux by Roe's method, the first

step is to express UR - UL as

U, - U

= T,V
R L X KK
where {VK} are the eigenvectors of K, and {aK} are the coeffi-

cients of the expansion. Then the interface flux is given by
F'i+§ = Q(FL + FR) -3 ')é(!K“\K‘VK (21)

where L,R refer to i,i+1, and ,AKI is the absolute value of an
eigenvalue of A.

This flux defines a robust first-order scheme, suitable
for use in non-smooth regions of the flow, and having properties
very similar to those of Godunov's scheme. In smooth regions it

is allowable to add terms that produce second-order accuracy;
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the flux equation (21) becomes

1+§- é(F + FR) - QZQK')\ ' [1 - (PK(I - ‘VK‘)]V {22)

where % is a function equal to zero in non-smooth parts of
the flow, but close to unity in smooth regions. Note that a
separate smoothness monitor o is used for each wave. In (22)
Yk is the Courant number associated with the Kth wave, that is
At
Yk TR
In smooth regions, putting ¢K = 1 yields

t oat T A2V

F R) - K%Yk

i+d JF 4 F

AAt (F

BEF+ Fp) - FL)

which recovers the flux of the Lax-Wendroff formula.
Different methods of computing @ are discussed in [10]

and some of the references quoted there. In our present

calculations we have used the "Superbee" limiter function.

4. TEST PROBLEMS

We consider two test cases, namely problems 1 and 2. For
problem 1 the initial condition (t=0) is the steady exact
solution; the boundary condition on the left boundary is Pp = Po
and parameters are chosen so that P = S, where S is the steady
shock speed. The computed results will show profiles of
density, reaction progress variable and pressure for ten

different times. Note that a reaction-zone width corresponds
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unit time. The initial profile is also shown in the figures.
This is the simplest test case one can devise for the analogue
and yet it will show quite clearly what the limitations of some
of the methods applied are. The exact solution is used for
comparison with the numerical solution.

Problem 2 resembles more realistic detonation problems.
The initial profile is a flat topped (unreactive) shock which
initiates reaction. After a sufficiently long time (about five
time units) a steady detonation has been developed. Parameters
are chosen so that a steady solution as in problem 1 is obtained,
ie. Pp = Pe = S.

In both problems 1 and 2 the choice on an 'ignition
criterion' is necessary. For all the cases considered we took
the value p = 4.0 as the value above which chemical reaction

took place.

5. NUMERICAL RESULTS AND ASSESSMENT OF METHODS

Here we present one set of results for each of the two test
cases specified in Section 4 (problems 1 and 2). All results
are for a fixed and regular mesh. The chosen mesh size DX = 0.5
is such that the reaction zone is discretised by ten points;
this is perhaps the maximum number that one could afford to use
in realistic computations using regular fixed meshes.

5.1 Results For Problem 1

A1l computed results for this problem are shown in Figs.

2 to 7. The respective numerical techniques used are:
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MacCormack's Method, the Moving Finite Element Method, Godunov's
Method, the Random Choice Method, the Hybrid Method and the Flux
Difference Splitting (Roe) Method. Values of some of the computing
parameters used are shown on the figures. The displayed
quantities are the density, the reaction progress variable and
the pressure (computed from the equation of state). Eleven
profiles are shown in each figure, except for the MacCormack's’
method, in which, to avoid confusion, only three profiles are
shown. On each plot, the first profile on the left is the
initial profile (time zero), which in this test case is the
exact steady solution. All subsequent profiles come in pairs,
showing the numerical solution (symbols plus dashed line) and
the exact solution (full line). A1l methods were run up to about
ten time units (about ten reaction zones).

The objective in mind for this test problem was to assess
the performance of the various candidate numerical methods on
the simplest problem, which in addition has an exact solution.
Since the initial profile is the exact solution itself, the least
that is expected from the numerical technique in use is preserva-
tion of the essential features of the solution (shock and the
reaction zone), independently of the number of time steps used in
the computations.

Fig. 2 shows results obtained using MacCormack; only twe
computed profiles are displayed. Quite clearly, these results

are completely unacceptable. The typical overshoots and spurious
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oscillations behind the shock are present (no artificial viscosity
used). From the density (or pressure) profiles it is impossible
to identify the main features of the probiem. Note however that
the solution for the reaction progress variable is slightly
better in that it is possible to see where reaction has taken
place. But since we are using an ‘'activation density' equal to
4.0, undershoots in the density profile below this value cause
the reaction to stop temporarily. Otherwise the profile for A
should be smooth, although notnecessarily correctly positioned.
This is because the rate eguation considered here is independent
of density. Hence for more realistic rate equations the
MacCormack solution for A should be even worse that that of

Fig. 2. We note that by using a mesh containing 50 points
within the reaction zone it is possible to obtain a signifi-
cantly better solution, although still unsatisfactory. But

this sort of mesh is completely unrealistic.

Fig. 3 shows results obtained using the Moving Finite
Element Method. The results are perfect for this problem.

Fig. 4 shows results obtained using Godunov's Method.
Results are significantly better than those obtained using
MacCormack, but the shock is smeared and the discontinuity
in derivative at the end of the reaction zone is completely
missed, as expected from a first order difference method.
Consequently, the computed reaction zone has more than twice

the correct width, after about ten time units. Also, shock
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peak values are not attained accurately, the error is about 10%.
This method, as it stands, is not a serious candidate for
detonation problems.

Fig. 5 illustrates the results obtained by the Random
Choice Method. These are very satisfactory. The shock is
absolutely sharp (zero width), as guaranteed by RCM, although
its position is affected by randomness. The discontinuity in
derivative at the end of the reaction zone is very accurately

captured. The reaction zone has the correct width, but the

profile inside it is also affected by randomness (not the reaction

progress variable). Shock peak values are very accurate. The
disadvantage of the method is the randomness, which is more
clearly manifested in the pressure profiles in the present
computations.

Fig. 6 shows the results obtained by the Hybrid Method
(Higher Order Random Choice plus RCM at large discontinuities).
These results look very good. The typical randomness of RCM
has been eliminated and the zero-width shock of RCM has been
retained. The shock position, however, is still affected by
certain randomness.

Fig. 7 illustrates the results obtained using Roe's method.
They are very satisfactory. The shock is smeared but not as
much as in the results obtained by first order Godunov's method
(Fig. 4). Also, it is known that this high resolution scheme

performs very well in more realistic gas dynamical problems,
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as compared with other modern numerical methods.

5.2 Results for Problem 2

This test case was described in Section 4. The problem
simulates detonation initiation by a flat-topped shock of
sufficient strength. The intention is to assess the ability of
the methods to 'grow' the detonation to the steady state solution.
Results are shown in Figs. 8 to 11. The methods tested are
Godunov, RCM, Hybrid and Roe's. We have excluded MacCormack from
these results. Problem 1 has already shown its inadequacy. Also,
we have excluded the Moving Finite Element Method. We could not
succeed in producing acceptable solutions for this more realistic
problem.

The performance of the various methods considered here is
similar to that on Problem 1. They are all capable of initiating
the detonation and carry it to steady state in about the
same time (about five time units).

6. CONCLUSIONS

The numerical experiments using Probiems 1 and 2 suggest
that both MacCormack and Godunov methods are inadequate for
the problem under study. Our MFE method could only succeed in the
simplest problem although there the results were impressive.

The remaining three methods (RCM, Hybrid and Roe) are presently
being assessed in terms of (a) performance for the unsteady
Euler equations in two space dimensions (b) ability of the

method to incorporate complicated equations of state (c) viability
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to implement the method using irregular, adaptive grids
(d} computational efficiency and, naturally (e} degree of devel-
opment of the technique and experience from applications to
similar problems. Given these criteria, Roe's Method is a good
candidate for the full physical problem, although we are still
working on the key difficulty affecting Hybrid, and more part-
icularly RCM; that is, the extension of this method to multi-
dimensional problems preserving the quality of their one-
dimensional performance.
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